skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brazelton, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    Recall that a non-singular planar quartic is a canonically embedded non-hyperelliptic curve of genus three. We say such a curve is symmetric if it admits non-trivial automorphisms. The classification of (necessarily finite) groups appearing as automorphism groups of non-singular curves of genus three dates back to the last decade of the 19th century. As these groups act on the quartic via projective linear transformations, they induce symmetries on the 28 bitangents. Given such an automorphism group G=Aut(C), we prove the G-orbits of the bitangents are independent of the choice of C, and we compute them for all twelve types of smooth symmetric planar quartic curves. We further observe that techniques deriving from equivariant homotopy theory directly reveal patterns which are not obvious from a classical moduli perspective. 
    more » « less